Mark Scheme

Q1.

Question Number	Correct Answer	Reject	Mark
(a)	Reduction (1) Has gained 1 electron / oxidation number has decreased (from (+)2 to $(+1)(1)$ Oxidation = 0		2

Question Number	Correct Answer	Reject	Mark
(b)(i)	Starch (1)	Purple, clear	2
	Blue-black / Blue / black to colourless (1)		

Question Number	Correct Answer	Reject	Mark
(b)(ii)	$\begin{aligned} & \text { Moles of thiosulfate }=(12.75 / 1000 \mathrm{x} \\ & 0.2)= \\ & 0.00255 \mathrm{~mol}(1) \end{aligned}$ Moles of iodine $=(0.00255 / 2)=$ $0.001275 / 1.275 \times 10^{-3} / 0.00128$ $1.28 \times 10^{-3}(1)$ Allow TE for correct use of ratio for $2^{\text {nd }}$ mark Correct answer alone $=2$ marks		2

Question Number	Correct Answer	Reject	Mark
$\begin{aligned} & \text { (b)(iii) } \\ & \text { QWC } \end{aligned}$	Moles of $\mathrm{Cu}^{2+}=0.00255$ (1) Allow TE from b (ii) $\left[\mathrm{Cu}^{2+}\right]=0.255 \mathrm{~mol} \mathrm{dm}^{-3}(1)$ Allow TE for scaling up correctly Correct answer alone $=2$ marks $3 S F$ is the least accurate level of the measurements used in the calculation/experiment (1) OWTTE		3

Question Number	Correct Answer	Reject	Mark
(b)(iv)	They are not reliable as the experiment was only carried out once so there is no evidence that the result is repeatable OWTTE	1	

Q2.

Question Number	Acceptable Answers	Reject	Mark
(a)(i)	$\begin{align*} & \text { Amount } \mathrm{Na}=1.73(\mathrm{~g}) \div 23\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \\ & =0.075(22)(\mathrm{mol}) \\ & \text { Amount } \mathrm{O}=1.20(\mathrm{~g}) \div 16\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \\ & =0.075(\mathrm{~mol}) \tag{1}\\ & \text { IGNORE sf, even if } 1 \mathrm{sf} \end{align*}$ NaO Correct answer no working NOTE: Correct answer can be obtained via incorrect working and all responses should be read carefully e.g. Amount $\mathrm{Na}=23 \div 1.73=13.3$ Amount $\mathrm{O}=16 \div 1.20=13.3$ scores second mark only for NaO if obtained by incorrect working OR e.g. Use of atomic numbers gives the Na : O ratio as 0.157:0.150 and an empirical formula of NaO . This scores (1) overall (i.e. the 2nd mark). OR e.g Use of atomic number ONLY for Na (i.e. $\mathrm{Na}=11$) gives the Na : O ratio as $0.157: 0.075$ and an empirical formula of $\mathrm{Na}_{2} \mathrm{O}$. This scores (1) overall (i.e. the 2nd mark). NOTE: Use of $\mathbf{O}=32$ gives $\mathrm{Na}_{2} \mathrm{O}$ and scores second mark	$\mathrm{Na}_{2} \mathrm{O}_{2}$	2
Question Number	Acceptable Answers	Reject	Mark
(a)(ii)	```(NaO = 39 hence molar mass twice that of NaO \therefore) so Na,}\mp@subsup{\mathbf{O}}{2}{```	'2 NaO^{\prime}	1

Question Number	Acceptable Answers	Reject	Mark
(a)(iii)	$2 \mathrm{Na}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{O}_{2}(\mathrm{~s})$		2
	All species correct (1)		
	State symbols and balancing (1)		
	NOTE:		
	$2^{\text {nd }}$ mark is conditional on correct species.		
	NOTE:		
	$\begin{aligned} & 2 \mathrm{Na}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NaO}(\mathrm{~s}) \\ & \text { scores (1) } \end{aligned}$		
	$\begin{aligned} & \mathrm{Na}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{NaO}_{2}(\mathrm{~s}) \\ & \text { scores (1) } \end{aligned}$		
	$\begin{aligned} & 4 \mathrm{Na}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(\mathrm{~s}) \\ & \text { scores }(2) \end{aligned}$		

Question Number	Acceptable Answers	Reject	Mark
(a)(iv)	Moles of $\mathrm{O}_{2}=0.075 \div 2=0.0375$ OR $1.2 \div 32=0.0375(\mathrm{~mol})$ $0.0375 \mathrm{~mol}^{2} 24 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ $=0.9(0)\left(\mathrm{dm}^{3}\right)$ ALLOW $900 \mathbf{c m}^{3}$ (units must be present here) Correct answer no working OR Moles of $\mathrm{Na}=1.73 \div 23=0.075217$ $=$ moles of O Moles of $\mathrm{O}_{2}=0.075217 \div 2=$ 0.0376085 $0.0376085 \times 24=0.903\left(\mathrm{dm}^{3}\right)$ or $903 \mathbf{c m}^{3}$ IGNORE s.f., including ONE s.f. NOTE: If number of moles $\times 24\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1}\right)$ is clearly evident and correctly calculated in stated units, award second mark		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{(a) (v)}$	$0.0375 \times 6.02 \times 10^{23}$ $\left(=2.2575 \times 10^{22}\right.$ (molecules)) $=2.26 \times 10^{22}$ (molecules) IGNORE s.f. unless 1 s.f.		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(b)	Sodium might react with nitrogen in the air/sodium forms a nitride/ nitrogen (gas) is present in the air (which reacts with the sodium) OR sodium might form a different oxide (e.g. $\mathrm{Na}_{2} \mathrm{O}$ or allow NaO_{2})	Just 'very reactive' OR 'very explosive' sodium forms $\mathrm{Na}_{2} \mathrm{O}_{2}$ alone	$\mathbf{1}$
NOTE: If nitrogen / N_{2} is mentioned as part of a 'list' of substances that can be present in air, award the mark	References to hydrogen in the air	Just 'reacts with other substances in the air' (as nitrogen not identified	Sodium nitrate formation

Q3.

Question Number	Correct Answer	Reject	Mark
(a)(i)		Skeletal / structural formulae	(1)

Question Number	Correct Answer	Reject	Mark
(iii)	Because they damage the ozone layer OR (Halothane products like) 1,1,1-trichloroethane are narcotic inhalants / poisonous / toxic IGNORE References to just: - formation of chlorine radicals - formation of $\mathrm{Cl} \bullet$ - carcinogen	Any statement that this compound is a CFC / forms Cl_{2} (on breaking down)	(1)

Question Number	Correct Answer	Reject	Mark
(b)(i)	ICl is a stronger electrophile / better electrophile Allow a correct description of an electrophile even if the term is not used. e.g. ICl has a vacancy for a bonding pair of electrons OR the ICl (bond) is polar NOTE: ALLOW the ICl (bond) is more polar C=C	(1) OR Mention of presence of the I $I^{\delta+}$ (in ICI) ALLOW 'It' for ICl	

Question Number	Correct Answer	Reject	Mark
(ii)	 I and Cl can be interchanged and on either side Look out for only I or Cl added without hydrogen, also 2 I and 2 Cl added.	I and Cl on the same carbon	(1)

Question Number	Correct Answer	Reject	Mark
(iii)	To prevent formation of free radicals	Causes oxidation	(1)
	OR To prevent (free radical) substitution OR To prevent (I-Cl) bonds breaking homolytically ALLOW UV causes it to react / to decompose IGNORE light causes it to react / to decompose		

Question Number	Correct Answer	Reject	Mark
(iv)	ALL THREE oxidation numbers must be correct: (Iodine monochloride) +1 ALLOW 1+ (Iodide ion) -1 ALLOW 1- (Iodine) 0 (Ionic equation) $\mathrm{ICl}+\mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+\mathrm{Cl}^{-}$ Ignore state symbols even if incorrect Both partial and full charges on ICl are acceptable, provided they are the right way around		(2)

Question Number	Correct Answer		Reject	Mark
(c)	(Indicator)	(1)		(2)
	Starch (solution)		No M2 if states "From purple to ..."	
	(Colour change from) Blue-black to colourless ALLOw Blue to colourless OR Black to colourless IGNORE References to 'clear' Mark independently	(1)		

In (d) penalise incorrect units once only

Question Number	Correct Answer	Reject	Mark
(d)(i)	Number of moles of thiosulfate $=$	(1)	
	$\frac{20.0 \times 0.100}{1000}=2(.00) \times 10^{-3} / 0.002(00)$		Reject
Question Number Correct Answer Mark (ii) $\left(2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\right.$ aq $\left.)+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow\right) \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}+2 \mathrm{I}^{-}$ IGNORE state symbols even if incorrect			

Question Number	Correct Answer	Reject	Mark
(iii)	Number of moles of iodine $=0.002(00) \div 2$ $=1(.00) \times 10^{-3} / 0.001(00)(\mathrm{mol})$		(1)

Question Number	Correct Answer	Reject	Mark
(iv)		$1(.00) \times 10^{-3} / 0.001(00)(\mathrm{mol})$	
Question Number Correct Answer Reject Mark (v) $(0.001(00)-0.000365)$ $=6.35 \times 10^{-4} / 0.000635(\mathrm{~mol})$ $\mathbf{(1)}$			

Question Number	Correct Answer	Reject	Mark
$\mathbf{(v i)}$	$(0.000635 \times 100$ $=0.2(00)$ $=0.3175(\mathrm{~mol})$		(1)

Question Number	Correct Answer	Reject	Mark
(vii)	$0.3175 \times 2 \times 126.9=80.5815(\mathrm{~g})$ If student uses A_{r} for $\mathrm{I}=127$, final answer equals $80.645(\mathrm{~g})$		(1)

Question	Correct Answer	Reject	Mark
Number	(e)	(Sample titre) Higher and (Iodine value) Lower	
$\mathbf{1}$			

Q4.

Question Number	Acceptable Answers	Reject	Mark
(a) (i)	$\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ (Allow atoms in $\mathrm{H}_{2} \mathrm{CO}_{3}$ in any order) Or $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$ Or $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow 2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-}$ Or $\mathrm{H}_{3} \mathrm{O}^{+}$in place of H^{+} IGNORE STATE SYMBOLS EVEN IF INCORRECT		1

Question	Acceptable Answers	Reject	Mark
(a) (ii)	$\begin{aligned} & 2 \mathrm{H}^{+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\ & \mathrm{LHS}(1) \quad \mathrm{RHS}(1) \\ & \mathrm{OR} \\ & 2 \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \\ & \mathrm{LHS}(1) \quad \mathrm{RHS}(1) \end{aligned}$ IGNORE STATE SYMBOLS, EVEN IF INCORRECT IGNORE = arrows	$\mathrm{H}_{2} \mathrm{CO}_{3}$ as a product $\mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \rightarrow \mathrm{HCO}_{3}^{-}$ Any other ions including spectator ions (e.g. $\mathrm{Ca}^{2+}, \mathrm{Cl}^{-}$) in the equation scores zero	2

| Question
 Number | Acceptable Answers | Reject | Mark |
| :---: | :--- | :--- | :--- | :--- |
| (b) (i) | | | 2 |
| dilute hydrochloric acid | | | |

Question Number	Acceptable Answers	Reject	Mark
(b) (ii)	Any method which is likely to bring the reactants into contact after the apparatus is sealed	Method suggesting mixing the reactants and then putting bung in flask very quickly	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
(b) (iii)	$(224 \div 24000=) 0.009333 / 9.333 \times 10^{-3}(\mathrm{~mol})$ lgnore SF except 1 SF lgnore any incorrect units	" 0.009 " as answer	1

Question Number	Acceptable Answers	Reject	Mark
(b) (iv)	$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g} / \mathrm{aq})$ ALL FOUR state symbols must be correct for this mark	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
(b) (v)	(Mass of $\left.1 \mathrm{~mol} \mathrm{CaCO}_{3}=40+12+3 \times 16\right)=100 \mathrm{~g}$		1
	ALLOW just " 100 " ALLOW any incorrect units		
	ALLOW " 100.1 g " OR just "100.1" (Reason: this uses the Periodic Table value of $A_{r}=40.1$ for Ca)		

Question Number	Acceptable Answers	Reject	Mark
(b) (vi)	$\left(\text { Mass of } \mathrm{CaCO}_{3}=100 \times 0.009333\right)=0.9333(\mathrm{~g})(1)$ IGNORE sig figs including 1 sf here NOTE: Moles of CaCO_{3} consequential on answers to (b)(iii) and (b)(v) [NOTE: if $A_{r}=40.1$ used for Ca , then the answer $=0.9339(\mathrm{~g})$] Percentage of CaCO_{3} in the coral $\begin{equation*} =100 \times 0.9333 / 1.13=82.6 \% \tag{1} \end{equation*}$ NOTE: If mass CaCO_{3} used is 0.93 , final answer is 82.3\% [NOTE: if $A_{r}=40.1$ used for Ca , then the answers $=0.9339(\mathrm{~g})$ and 82.7\%]	Final \% answer is not given to 3 sf	2
Question Number	Acceptable Answers	Reject	Mark
(b) (vii)	(Different samples of) coral have different amounts of CaCO_{3} /different proportions of CaCO_{3} / different "levels" of CaCO_{3} ALLOW "calcium carbonate" for CaCO_{3} OR Only one sample of coral (was) used	Answers that do not include any mention of CaCO_{3} References to solubility of CO_{2} in water References to repeating the experiment at a different temperature	1

Q5

Steps:

- How many moles of HCl were used in the titration?
$0.02245^{*} 0.2=4.49 \times 10^{-3}$
- How many moles of NaOH were used in the titration?
$\mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$, so same as moles $\mathrm{HCl},=4.49 \times 10^{-3}$
- How many moles of NaOH were in the $250 \mathrm{~cm}^{3}$?

We tested $25 \mathrm{~cm}^{3}$, so in 250 there must be $\times 10$ as much $=4.49 \times 10^{-2}$

- How many moles of NaOH were added in the first place?

Moles $=$ conc \times vol $=5 \times 0.01=0.05$

- How many moles of NaOH reacted with the ethanoic acid?

Difference between moles added and mole reacted with $\mathrm{HCl}=0.05-0.0449=0.0051$

- How many moles of ethanoic acid were there in $50 \mathrm{~cm}^{3}$?
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$ so same as moles $\mathrm{NaOH}=\mathbf{0 . 0 0 5 1}$
- What is the concentration of the ethanoic acid?

Conc $=\mathrm{mol} / \mathrm{vol}=0.0051 / 0.05=\mathbf{0 . 1 0 2} \mathrm{moldm}^{-3}$
(if you have got this you are officially awesome, particularly if you didn't use the steps hint!!)

